S Series Bluetooth Water Quality Tester

High-performance bluetooth water quality testers, including the 6 models. The testers are suitable for Android smartphone or tablet.

Features

S10 pH Tester

- 1 to 5 points calibration with automatic recognition for USA, NIST and DIN buffers
- Automatic electrode diagnosis shows the pH slope and zero offset
- Solution temperature coefficient compensates for the pure water samples and references the pH to 25°C

S20 ORP Tester

- 1 point offset calibration allows adjusting the displayed value to a known standard
- Relative and absolute millivolt modes ensure the reliable ORP measurements

\$30 Ion Tester

- 2 to 5 points calibration, including the selection of 8 concentration points
- Electrode management is capable of storing and recalling up to 3 electrode slopes
- Automatic electrode diagnosis shows the calibration points and electode slopes
- Selectable ion measurement methods (direct reading, known addition/subtraction, sample addition/subtraction) and concentration units (ppm, mg/L, mol/L, mmol/L)

\$40 Water Hardness Tester

- 2 to 5 points calibration from low to high concentrations
- Selectable water hardness unit, including german degree (°dH), english degree (°e), french degree (°fH), gpg, mg/L and mmol/L

\$50 Conductivity Tester

- 1 to 3 points calibration with automatic recognition for conductivity standards
- Automatic electrode diagnosis shows the calibration points and factors
- Selectable cell constant, temperature compensation type (linear/non-linear/EP/USP), temperature compensation coefficient, pure water compensation coefficient, reference temperature (20/25°C) and TDS conversion factor (0.01 to 1.00)

\$60 Dissolved Oxygen Tester

- 1 or 2 points calibration using the air-saturated water or zero oxygen solution
- Salinity and barometric pressure compensations eliminate the measurementerrors
- Selectable testing time, beginning/ending dissolved oxygen are used for oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR) calculations

General Features

- Automatic temperature compensation ensures accurate readingsover the entire range
- · Auto-read function senses and locks the measurement endpoint
- Timed Interval Readings sends the measurement data to memory or printer
- Limit Alarm automatically alerts when measurement exceeds the specified range
- Calibration due alarm reminds the user to calibrate the tester regularly
- Password protection prevents the unauthorized calibration and settings
- Multiparameter measurement allows up to 3 testers connected to device and displays readings simultaneously
- Reset function automatically resumes all settings back to the factory defaults

Ordering Information

- S10: Tester, pH buffer solutions, carrying case
- S20: Tester
- S30: Tester, ion selective electrode, 100/1000 ppm standard solutions, ionic strength adjuster, carrying case
- S40: Tester, water hardness electrode, 10/100 mmol/L standard solutions, ionic strength adjuster, carrying case
- S50: Tester, conductivity standard solutions, carrying case
- S60: Tester, dissolved oxygen electrode, electrolyte solution, membrane cap, carrying case

Specifications

	Model	\$10
	Range	-2.000~20.000 pH
	Resolution	0.001, 0.01, 0.1 pH, selectable
	Accuracy	±0.002 pH
玉	Calibration	1 to 5 points
	pH Buffer Options	USA, NIST, DIN, 5 custom buffers
	Temperature Compensation	0~100°C/32~212°F, automatic
	Solution Temperature Coefficient	25°C
	Range	±2000.0 mV
쥩	Resolution	0.1, 1 mV, selectable
	Accuracy	±0.2 mV

	Model	S20
ORP	Range	±2000.0mV
	Resolution	0.1, 1 mV, selectable
	Accuracy	±0.2 mV
	Calibration	1 point

	Model	S30
	Range	0.001~30000 (depending on the range of ISE)
	Resolution	0.001, 0.01, 0.1, 1
	Accuracy	±0.5% F.S. (monovalent), ±1% F.S. (divalent)
	Measurement Units	ppm, mg/L, mol/L, mmol/L
트	Calibration	2 to 5 points
	Calibration Solutions	0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000
	Temperature Compensation	0~100°C/32~212°F, manual
	Measurement Methods	Direct reading, known addition, known subtraction, sample addition, sample subtraction
	Electrode Management	1 to 3 electrodes
Λm	Range	±2000.0 mV
	Resolution	0.1, 1 mV, selectable
	Accuracy	±0.2 mV

	Model	S40
	Range	$0.05 \sim 200\text{mmol/L}, 0 \sim 1122^{\circ}\text{dH}, 0 \sim 1404^{\circ}\text{e}, 0 \sim 2000^{\circ}\text{fH}, 0 \sim 1170\text{gpg}, 0 \sim 8020\text{mg/L} (\text{Ca}^{2+}), 0 \sim 20000\text{mg/L} (\text{CaCO}_3), 0 \sim 11220\text{mg/L} (\text{CaO}_3), 0 \sim 112200\text{mg/L} (\text{CaO}_3), 0 \sim 112200mg/L$
60	Resolution	0.001, 0.01, 0.1, 1
rdness	Accuracy	±1% F.S.
훈	Measurement Units	mmol/L, °dH, °e, °fH, gpg, mg/L (Ca²+), mg/L (CaCO₃), mg/L (CaO)
Vate	Calibration	2 to 5 points
	Calibration Solutions	0.01, 0.1, 1, 10, 100 mmol/L
	Temperature Compensation	0~50°C/32~122°F, manual
	Range	±2000.0 mV
\mathbb{\math	Resolution	0.1, 1 mV, selectable
	Accuracy	±0.2 mV

Model	S50-M	S50-H
Range	$0 \sim 20.00, 200.0, 2000 \mu \text{S/cm}, 20.00 \text{mS/cm}$	$100.0 \sim 2000 \mu \text{S/cm}, 20.00, 200.0 \text{mS/cm}$
Resolution	0.01, 0.1, 1	0.01, 0.1, 1
Accuracy	±0.5% F.S.	±0.5% F.S.
Calibration	1 to 3 points	1 to 3 points
Calibration Solutions	84µS/cm, 1413µS/cm, 12.88 mS/cm	1413 µS/cm, 12.88 mS/cm, 111.8 mS/cm
Temperature Compensation	0~100°C/32~212°F, automatic	0~100°C/32~212°F, automatic
Temperature Coefficient	Linear (0.0~10.0%/°C), non-linear, USP, EP	Linear (0.0~10.0%/°C), non-linear, USP, EP
Pure Water Compensation	Yes	Yes
Reference Temperature	20/25°C	20/25°C
Cell Constant	K=1	K=10
Range	0~10.00, 100.0, 1000 mg/L, 20.00 g/L	0~100.0, 1000 mg/L, 10.00, 200.0 g/L
Resolution	0.01, 0.1, 1	0.01, 0.1, 1
Accuracy	±1% F.S.	±1% F.S.
TDS Factor	0.01~1.00 (default 0.5)	0.01~1.00 (default 0.5)
Range	0.00~10.00 psu, 0.00~10.00 ppt, 0.00~1.00%	0.00~42.00 psu, 0.00~80.00 ppt, 0.00~8.00%
Resolution	0.01	0.01
Accuracy	±1% F.S.	±1% F.S.
Range	$0.00\sim10.00\mathrm{M}\Omega$	$0.00\sim1.00\mathrm{M}\Omega$
Resolution Accuracy	0.01, 0.1, 1	0.01, 0.1, 1
Accuracy	±1% F.S.	±1% F.S.
Range	0~100%	0~100%
Range Resolution	0.01, 0.1, 1	0.01, 0.1, 1
Accuracy	±1% F.S.	±1% F.S.
Measurement Modes	ICUMSA GS1/3/4/7/8-13, GS2/3-17	ICUMSA GS1/3/4/7/8-13, GS2/3-17

	Model	S60
Dissolved Oxygen	Range	0.00~20.00 mg/L, 0.0~200.0% saturation
	Resolution	0.01 mg/L, 0.1%
	Accuracy	±0.2 mg/L, ±2.0%
	Calibration	1 or 2 points
	Temperature Compensation	0~50°C/32~122°F, automatic
	Barometric Pressure Correction	60.0~113.3 kPa/450~850 mmHg, manual
	Salinity Correction	0.0~50.0g/L, manual
	Measurement Modes	Dissolved oxygen, BOD (biochemical oxygen demand), OUR (oxygen uptake rate), SOUR (specific oxygen uptake rate)

	For all of S series testers	
v ₂	Stability Criteria	Fast, standard, slow
cations	Measurement Modes	Continuous or auto-read
iiii	Timed Interval Readings	10, 30, 60, 300 seconds or off
General Spo	Calibration Due Alarm	1 to 99 days or off
	Data Transfer	Send to memory or printer
	Power Requirements	2×1.2V lithium batteries or AAA batteries